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The Problem

In exploratofy research, regression analysis is often applied to

nonexperimental multivariable data in an attempt to reveal relationships

béiween a dependent variable and a set of regressox variables. Conceptually,
the variation in the dependent varigble may be separated into three parts,
(i) that which can be attributed to the regressor variables individually,
(11) that which can be atgributed to the regressor variables as a group

and (iii) the residual variztion which is unexplained by - the :egfession.
Parte (1) and (ii) together coﬁprise the total variation explained by

the regression. Since part (1) is composed of the go-called unique sums

1/

of squares='it will be referred to as the unique portion of the unexplained

variation. The purpose of this note is to analyze the nonuniqué portion

of explained variation ({.e. part (i1)), a subject which has apparently

2 .
not received much attention heretofore;'/‘ The motivation for doing so is

‘.ow

the promise of a more complete understanding of the relationship of the

dependent variable and the regressor variables. Since the procedure for

D LR

" .

N
o 4 K i P A3t Yt 5. ittt o~
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partitioning the nonunique part may be regarded as an extension of a method

for obtaining the unique sums of squares we will begin with a discussion

of the latter.

1/ Also celled the extra or added sums of squares.

2/ During preparation of this note, two articles were discovered which
present essentially the same results as this paper but with another
approach and somewhat different motivation. See R.G.Newton and D.J.
Spurrell, “A Development of Multiple Regression for the Analysis of
Routine Data," Applied Statistics, Vol. 16, No. 1, 1967 and "Examples

of the Use of Elements for Clarifying Regression Analysis," Applied
Statistics, Vol. 16, No. 2, 1967.
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One measure of the variation in the dependent variagble is the
sum of squares of deviations of the observations from the mean. More
hanrvation of the dependent

‘-J ’ v - i - — - — — -

variable and let ¥ be the mesn of m observations. Then

S(Y) = g 1, - H?

is the sum of squares of the deviatioms.

1f a regression analysis is carcied out using, say, t}iree regressor
veriables the result is an equation of the forxm |
¥ =b, + X;b, +.)i2b2 Xab s
GiQen a set of observations, xii’ Xiz and xiB’ one can then estimate
the corre@p‘ending value o<f the dependent variable ¥ T * The amount of
variation which 1is explained‘by the regression on Xl, x2 and x is

3
S(xlx X3) 2 A, - 0’
and the proportion of the total variation which has been accounted for

by the rzgression is

" S(X,X
R (xlxzx 3) =

S(Y)

3)

which is the square of the multiple correlation coefficient. The residual

variation whidh is unaccounted for by the regression will be denoted as

Z(Y - Yi)
i=1
The procedure for obtaining the unigue contribution of, say, Xl
to the sum of squares is to regress Y against xzhand X3. This yields

S(XZXB), the variation accounted for by the variables X2 and Xs.




The unique sum of squares associated with X, is now defined to be

1
. Y(Xl) = S(X1X2X3) - S(XZXB)

Thus Y(Xl) represents the additional explained sum of squaxres when

¥, is added to the regression last. {(iIn actusl computation Y('Xl) can

be computed in another way so that it is not necessary to run two

complete regressions.)

Using Table 1 we may now look again at.our yway of claasifying
the total variation. At this stage of the development the nomu'.lique
portion is shown simply as the difference betwgen the total variation
and the other two known components. Before proceeding to the analysis

some interpretive remarks may be helpful.

Table 1

Classification Sum of
of the Variation Squares . ‘
Unique Portion Y(X;) + Y(XZ) + f(X3) . k.
Nonunique Portion S(Y) -;(Yi-'il)z - ¥(¥y) - X, - 7(Xq) g

- ' )
Residual ; (Yj_-Yl) _—
Total 5(¥)

The unique contributions of the variables are often calculated

because they provide an indication of the relative importance of the several

' regressor variables in explaining the dependent variabile. They are potentially
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misleading however because they neglect the nonunique portion of explained

variation. Looking at the origin of rhis variation will illuminate the
probliem,
To examine the nonunique variation more deeply requires the notion

of orthogonality améng the data vectors, a concept developed in some

0 ~ 4
K detail in books such as Gnldbergeréj oxr Draper and Smithrj. Briefly, it
can be explained as follows. Let X, am.d'x.j now be column vectors of

th and jth variables expressed as deviations from

observations on the i
the mean. If there are m obéérvations these will be m-dimensional data
vectors. Two such vectors are saiq to be orthogonal if Xin = 0, tha;

is if the vectors are at iight angles. to one another in m-space. In
general, the cosine of the angle between the vectors ig éqp&l‘to the
sample correlation coefficient between the two,Variabies. If a set of
data vectors are mutually czrthogonal then théy.aré uncorrelated with one
another and the unique sums of squares will add up to the total explained

sum of squares. In other words, each regressor variable is bringing nsw .

information to the regression.

Goldberger, Econumetric Theory, (New York: Johm Wiley, 1264).
Draper and H.Smith, Applied Regression Analysis, (New York:

2L\
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If the vegressors are to some extent redundant, however; we have
a departure from orthogonality. When the departure is considerable
this condition is known as multicollinearity and is due to high inter~
corralations among the regressor varigbles.éj The nonunigue portion of
explained variation is then mnonzero and the problem of determining the
contributions of individual variables is inherently ambiguous. The next
sextion, however, deséribes a way of partitioning the nonunique variatioﬁ

which can be an aid to interpreting the results of regression analyses.

The Three Variable Case

Pofinition of Commonalities
For ease of exposifion, the following discussion of the partitioning
procedure will be restricted to three independent variables. The equations

required for the n-variable case are given in the Appendix.

First, recall that the unique contribution of X, was defined as the

1

sum of squares with all three variables less the sum of squares associated
with the regicssion on XZ and X, i.e.
vl(xl) = S(X.X. X)) - s(x2x3)
cr in general
(1) YI(Xi) = S(X.X.X) -S(XX);

13k jk
Here and subsequently in the three variable case i = 1,2,3 and i#j#ke

5/ 1In the extreme multicollinearity case, a data vector can be written
as an exact linear combination of other data vectors. This condition
makes regression analysis impossible because matrix inversion cannot
be carried out.
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This notion has a direct extension in the senmse that s(xixjx ) S(X )]

is a measure of the effect of adding the varisbles Xi and Xj to the
rESz'eSSiOn ]_.Rgf_:. YWe m&y axnrage fh"'a 1'\11 writing :

e sy

» 7 + y » + l
@ SEEIX) - S®) = HE) + HE) + HEK)
where YZ(Xin) is that part of the difference in the sum of squares

which may be associated with Xi or Xj. It may be regarded as that part

attributable to Xi and Xj in common, or for short, the commonality of
xixj. In particular since there are two variables invoived it will be
referred to as a second-order commonality.

Rearranging equation (2). pfovides us with a definition of second

order commonalities, viz.

(3) (x xj) S(X iX : .k) - s(xk) x Yi(xj)_

The definition is recursive in that the unique sums of squares have been

defined by equction (1).

.Ir.z analogy with equation (2) we may write the total sum of squares

attributable to a three variable regression as

(4) sX ij) = vl(xi) + vl(xj) + vl(xk) + Yz(xixj) + Yz(xixk)

Y
2(ijk) + 73(xixjxk).
Then rearranging equation (4} we have the definition of the third-order

commonality.

(5) 73(X1ijk) = S(Xixjxk) - Yl(Xi) - 1(X ) - l(x'k) 2(.7111(:‘)

(X X) - 7, (X jxk)




Peduced Form of the Commonalities

Collecting the three equations defining _comtﬁonalities we have
(1) -*g(xi) - S(x4x4x,_) - S(ijk); |
(3). ( . jxk) - S(Xk) - NE) - Yl(Xj);
(5) xk) = §(X jxk) X)) - 71(x) - N - vz(xi 5)

=7, (x %) - (x X )

The commonality terms on the right side of this .set of recursive

equations can now be eliminated yielding

6 7(X) = S(X Xij) S(X.jX)

(7 (X Xj)a ..S(X X ) + S{X Xk) + S(X Xk) - S(Xk)

(3) 73 iijk) S(Xixj‘{k) S( Xk) - S-(X Xk) + S(

+ S(Xj) + S(xk) B
The foregoing way of expressing the commonalities will be referred
to as.tl'xe reduced form.
Dividing (6), (7) and (8) by S(Y) gives alternative forms which

will he called cmmnonality ~oefficients.

Z(Xixjxk) - R* (XX )3

(9) U = 7&X)I/S@E) =R 4%

(10) cx Xj) ‘:'Z(Xixj)/S(Y) = ijk) + R (X X) -rR (X Xk) - R (Xk),

2 2
(11) cx ij) 73(xixjxk)/s(Y) = RC(X xjx) - R (xixj) - r? (xixk)

_ 2 2 n? 2
R (ijk) + R (Xi) + R (Xj) + R (Xk)
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In this way the part of the total variation associated with é.
combination of variables can be calculaten from the appropria*e mu]tiple

correlation coefficients.

Partitioning the Sums of Squares

Using the com@onality definitions in equations (1), (3) and- (),

the sum of squares attributable to a regression can be written in an

interesting form. Taking equations (3) and .(5) and aolving for .
S(Xk) gives
(12) S(X,) =N + 7 (xx ) + Y(XX ) + v(x xjx),.

Jk

solving equations (1) and (5) for S(XjX ) glves

(13) S(ijk) = 71(Xj) + YI{Xk) + '72(X1Xj). + 7 (X X ) + 7 (6:¢ %‘)

X X )
ané solving equation (5) for S(X 1 X Xk) gives

(14) s(xixjxk) S Yl(xi) + 7‘1(xj) + vl(x )+ Y (xixj) + vz(xilﬁc)

+Y(ij)+ (XXjX)
In each equation the sum of squares due to the regression is equal

to the sum of all unique sums of 8quares and commonalities associated with

the regressor variables. The meaning of the commonalities is now clear

in terms of equation (12). For example, 7, (X X ) is that part of the

sum of squares which is common to S(Xj) and S(x )and no other; 3(Xixjxk) is

conmon to S(Xi) S(Xj) and S(Xk) and no other; etc.
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‘Geoup of Variableés

The squations presented can essily be exiended tc apply to groups
of regressor varizktles. For example, let F represent the set of variables

Xl,Xz,Xé $ let G represent the set X ’XS and let N represent X6,X7 and X

Then-

8.

R2(F) = RZ(XyK,X,)

R (0) = RA(X,X,)
B2(m) = RE(XX.X,)
677°8
2 - nl '
R°(FG) = R (X1X2X3X4X5)
and 'so on.
The commonality coefficient_for.two sets of variables, say F and

G, is then

C(FG) = R2(FGH) - RZ(H) - C(F) - C(G)

by extension of equation (3) and other commonality coefficients follow

directly. Note that interpretation of the coefficients must be modified
slightly now; for example, a unique conLribution may refer to the.variation
explained by a group of variables rather than a single one. The grouping
device will be used in the example which follows.

An Exanple

To illustrate the use of commonalities we shail use some data

6
collected as part of the Educational Opportunities Survey (EOS).‘j

6/ Coleman, J.S., et al., Equality of Educational Opportunity. U.S.
Department of Health, Education and Welfare; National Center for
Educational 3tatistics, (OE-38001). Washington, D.C. 1966, U.S.
Government Printing Office Catalog No. FS 5.238:38001.
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The dependent variable is an index of achievement developed from the

7
EOS data:"/ A large number of regressor variables were separated into

four groups as follows: student background variabies (B), teacher
variabiés (T) , school program variables (P) and school fac%lities | 7
~varié.bles {F). Since this note is primarily concerned with methodology

ve need not go deeper into the nature nf these variables; readers more
.interested.in the -content should refer to Ma&eske,_et al:§/ _
Table 2 disﬁlays the set of commonality coefficieﬁts for the

data. For second and higher orders a table entry is made for each

variable with which a coefficieht is associated.

| 1)

Mayeske, G.W. and F.D.Weinfeld, Factor Analysis of Achievement .
: Heasures From the Educational Opportunities Surve s Division of =
188 Operations Analysis, Technical Note No. 21, January 18, 1967.

! : LA
e 8/ Mayeske, G.W., F.D.Weinfeld, A.E.Beaton, Jr., and J.M.Proshek, e

" Correlstional and Regression Analysis of Differences Between the f
B | Achievement Levels of Nirth Grade Schools from the Educational 2
| Opportunities Survey, Division of Operations Analysis, Unpublished
o manuscript.
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Commonality Coefficients

"

Table 2

Commonality

Third C(BPF)
Ozrder
C(TPF)

.0052
.0018

Sets of Regressor Variables
Coefficients .
B T P F
wB) | .1061
u(T) 0167
First
Order y(P)
ulr)
C(RT) | .4891 .4891
C(8P) | 0137
Second N
Order C(BF) | .0004
C(TP) .0066
C(TF) ~. 0099
C(PF)
C(BTP) | .1197 .1197
C(BTF) | (0304 .0304

Order

Fourth C(BTPF)].

.0561 .0561

szor a
Single Set of
Variableg

.8207  .7195




The last row of the table sums the coefficients for each column thus

giving the square of the multiple correlation coefficient for each

individual variable as suggested by equation (12). The sum of all

coefficients is RZ(BTZF) = .8662.

This set of results shows how knowledge of the higher order

commonalities can provide additional ingiéht into the relationship

among the variables. Looking at only the unique contributions of

the variables suggests that the student background varisbles with

U(B) = .1061 outweigh the others in explaining achicvement. How-

ever, the second order coefficient between student background and

teacher variables is .4891, the largest of all coefficients.  This means

that when these two sets of variables are added to the regression last,

the reduction in unexplained variance is substantially more than can

be attributed to each set individually on the basis of first order

cocefficients. Though we are not able to further separate this joint

contribution we are at least warned that the effect of the teacher

variablzs may be much greater than was indicated by the first order

coefficients.

The joint effects also carry through to higher order commonality

coefficients. Thus C(BTP) is .1197, the second largest coefficient, and

C(BTPF) is .0561 the fourth largest. Consequently, one has good reason
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to guard against'rejocting school vatiables in general and especially
teacher variables as determinants of achievement._'Resolutfon of the
ambiguity is another matter however for it 1s generally agreed that
correcting the effects of mnlticollinearity requires the a;quisition of .

9/

' new data.
The perhaps unexpected result that commonalities can be negative
" is eviuent from Table 2. Re-examination of their development shows
that, unlike the unique sums of squares, they are not constrained from
being negative. Exactly how negative commonalities should be 1oterpreted
is, at this time, an open question though the previously cited reference by

Newton and Spurrell offers a geometric explanation for their occurence.
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APPENDIX
Partitioning in the n-variable Case
Writing out expressions for commonalities in the n-#ariable case
requires some set notation to keep track of the variables. We will use

the following:

<
o]

-The set of all variables xl,xz,--—,x .

n
V:l . A subset of V! containing j members.

The complement of Vj.

v
VJ A subset of Vj.containing i members..

i
{Vi} The set of all possible Vi for a given Vj;

1]
The number of members in the set is (i) =~i'%; i)'
VJVi The union of the sets VJ and Vi.
For the thrée variable case the set memberships are given in Table Al.
The commonality definitions may be written as.
o = s - s@
%D = s@ - () =T 7 od)
{3}
. : 3 l ‘,
;| - - n =3 3
» 13(V7) = s(v") - 5(V°) - 23 Y,(V3) - }% 7, (V)
: {v>l {vi}
¥ (V) = s(v) - s(F) - DI v ) - Y v 0K ).,
‘1§ k k k~1 k-1 - Tk=2" k=2
] *VR~1} {VEPZ} (Vk)
. - M
. vy
) l(vn) =SV - 2 % (o) = 2 Ya(Wne2) - ees zr:; Y
3 ‘ n n
: {Vn-1} {vn-2} {1}
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Set Memberships

== =

X,

A

X

X13

W)

X, X

<3
N = N

<
]
S

DR NN 2

N a

X
12 13

XXX

empty

X.X

xlx 9

XX
3

X1X 3

XZX3

h'g
4;2X3

Takle Al
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The number of kth order communalities is n!/k! (n~k)! and

consequently the total number of commonalities is 281,
The reduced forms may be written as
n b = s - s@h
R = s + T s@h - 5@
{vi}
=2 3 =3 3 =3
L) = svP) - s}; s(Vv3) + 23 SV - 8(T)
. )
: af {vi}

7 (V) = (-1)““[3(\!") - ¥ s 4 v{: 5 (Tp_y)

: et} k=2

: SRR LED s(x'il"vl{)]- S(VY)

° il
7 (V") = (-1)“+1[S(v“) - 3 SR A Y S(Vp)
" fvn yo

{ n-l} { n-Z}
— (D™ T s
v

An alternative way of keeping track of the variables for the

N

reduced form is by a symbolic form for the argument. We give an

' 4 example first and then write the general form. A second order

L e i, Sy R LA e S
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commonality in the three variable case may be written as
2 :
LD = EX,) = s[-(1-xi)(1-xj)xk]
The meaning of the symbolic expression on the right is that the product

in the brackets 1s first multiplied out and then the absolute value of

each term becomes an argument for a sum of squares with the sign of

the term carryiag over as the sign on the gum of squares. That is,
Y (KX,) = S [-(1...xi)(1-xj)xk]
= S[-X K X AR XX X X ]

and upon converting from the symbolic form we have
(Al) xz(xixj) = -s(xixjxk) + S(ijk) + S(Xixk) - S(Xk)’

Equation (Al) is the same as equation (7).

Using the symbolic form we may write the commonalities which
compose S(Xl) as
nEY = SR XX ]

LEX) = s[L1-X PA-K)XX .. .xn]

VK Eyee X )= S[-X ) (1-Rp). . (X X ]

V(K Kye0 K ) = s[1-(1-x1)(1-x2)...(1-xn)]

The other commonalities have analogous forms.

om e
X

g — ——— e . . PRV



